4- β-d-RIBOFURANOSYL-1,2,4-TRIAZIN-3,5(2H,4H)-DIONE
 AND $4-\beta$-D-RIBOFURANOSYL-6-METHYL-1,2,4-TRIAZIN--3,5(2H,4H)-DIONE*

Hubert HŘebabecký
Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6

Received November 10th, 1980

Abstract

4- β-d-Ribofuranosyl-1,2,4-triazin-3,5($2 H, 4 H$)-dione ($I X$) and 4- β-d-ribofuranosyl-6-methyl--1,2,4-triazin-3,5(2H,4H)-dione ($X I$) were prepared by cyclization of (Z)-4- β-D-ribofuranosylsemicarbazones of methyl glyoxylate (VI) and methyl pyruvate (VIII) in the methanolic solution of sodium methoxide. A mixture of (E) - and (Z)-ribosylsemicarbazones $I I I$ and $I V$ was prepared by condensation of the ribosylsemicarbazide I with methyl dimethoxyacetate and a mixture of (E) - and (Z)-isomers V and VIII was obtained on condensation of I with methyl pyruvate. The (Z)-isomer $V I$ was prepared on acid-catalyzed isomerisation of the (E)-isomer $I I I$ while the (Z)-isomer VIII was obtained on the UV-irradiation of isomer V.

The earlier described ribosylations of the mercuric salt of 6 -azauracil ${ }^{1}$ and 5 -methyl--6-azauracil ${ }^{2}$ lead to a mixture of 1-ribosyl, 3-ribosyl, and 1,3-diribosyl derivatives of 6-azauracil. It followed from our earlier studies ${ }^{3-5}$ that the appropriate ribosy] derivatives of glyoxylic acid semicarbazones could serve as a suitable starting material for an unambiguous preparation of the 3-ribosyl nucleosides. In the mentioned papers, the semicarbazones of glyoxylic acid were shown to be suitable intermediates for the preparation of 6 -azauracil and its derivatives ${ }^{3-5}$. The isomerisation, alkylation, ribosylation, and cyclization of semicarbazones and thiosemicarbazones ${ }^{6}$ of glyoxylic acid esters was also followed. The ribosylation led to various products according to the method used. The silyl method ${ }^{5}$ afforded the 2 - β-ribosyl derivative while the ribosylation of the semicarbazone salts ${ }^{4}$ led to a mixture of $2-\beta-, 4-\beta-$, and $4-\alpha$-ribosyl derivatives, in the dependence on the used salt. A considerably easier cyclization ${ }^{3}$ of the (Z)-isomer to the corresponding 6 -azauracil derivatives, in comparison with the (E)-isomer, was also demonstrated.

On the basis of these findings we now used the cyclization of the appropriate 4-ribosylsemicarbazones of glyoxylic acid and pyruvic acid for an unambiguous preparation of the 3 -ribosyl derivatives $I X$ and $X I$. The starting 4- β-D-ribosylsemicarbazones were prepared on condensation of the ribosylsemicarbazide I with methyl

[^0] 6233 (1980).
dimethoxyacetate and methyl pyruvate. The semicarbazone $I I I$ was also prepared on condensation of semicarbazide I with glyoxylic acid and on subsequent csterification of the acid $I I$ with diazomethane. The total yield of this procedure is considerably lower, however, than the yield of the condensation of I with methyl dimethoxyacetate. The reaction of semicarbazide I with methyl dimethoxyacetate proceeded in refluxing dichloromethane within 5 h . A 6.4:1 mixture of (E)-isomer $I I I$ and (Z)--isomer $V I$ was obtained. The isomers were separated by column chromatography on silica gel. The (E)-isomer $I I I$ underwent an isomerisation when heated in the solution of hydrogen chloride in toluene. The reaction mixture afforded, on chromatography on silica gel, 21% of the (Z)-isomer and 74% of the (E)-isomer. The semicarbazone of methyl pyruvate V was prepared by the reaction of methyl pyruvate with semicarbazide I in 1,2-dichloroethane. Also in this case a small amount (5%) of the (Z)-isomer was isolated. Attempt at the acid-catalyzed isomerisation of the (E)-semicarbazone failed. Therefore, the phenylsemicarbazone $I V$ was prepared as a model compound and used for the study of a possible UV-induced isomerisation ${ }^{3,8}$. A $0 \cdot 1 \%$ solution of IV in methanol was irradiated by a medium-pressure mercury lamp for

I

$I I I, \mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-

- β-d-ribofuranosyl;
$\mathrm{R}^{2}=\mathrm{H}$
$I V, \mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
$V, \mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-- β-d-ribofuranosyl; $\mathrm{R}^{2}=\mathrm{CH}_{3}$

II

$V I, \mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-

- β-d-ribofuranosyl;
$\mathrm{R}^{2}=\mathrm{H}$
VII; $\mathrm{R}^{1}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathrm{R}^{2}=\mathrm{CH}_{3}$
VIII, $\mathrm{R}^{1}=2,3,5$-tri-O-benzoyl-
- β-d-ribofuranosyl;
$\mathrm{R}^{2}=\mathrm{CH}_{3}$

$$
\begin{aligned}
I X, \mathrm{R}^{1} & =\beta \text {-D-ribofuranosyl; } \mathrm{R}^{2}=\mathrm{H} \\
X, \mathrm{R}^{1} & =\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{CH}_{3} \\
X I, \mathrm{R}^{1} & =\beta \text {-D-ribofuranosyl; } \mathrm{R}^{2}=\mathrm{CH}_{3}
\end{aligned}
$$

1 h . Work-up of the solution afforded the (Z)-isomer (44%) and the (E)-isomer (38%). The isomerisation of the ribosylsemicarbazone V is accompanied by side-reactions. A 30 min irradiation furnished the (Z)-isomer in a 36% yield and the (E)-isomer in a 28% yield.

The configuration on the $\mathrm{N}=\mathrm{C}$ bond of particular isomers was unambiguously determined on the basis of IR spectra ${ }^{4}$. The stretching vibrations $v\left(\mathrm{~N}^{2} \mathrm{H}\right)$ of the (E) --isomers $I I, I I I, I V$, and V can be found at $3347,3343,3370$, and $3366 \mathrm{~cm}^{-1}$ while in the spectra of the (Z)-isomers VI,VII and VIII appear at 3292,3297 , and $3295 \mathrm{~cm}^{-1}$. The $\gamma(\mathrm{CH})$ band of $\mathrm{N}=\mathrm{CH}$ group of the (E)-semicarbazone $I I I$ is located at $915 \mathrm{~cm}^{-1}$, in contrast to the (Z)-semicarbazone $V I$, where $\gamma(\mathrm{CH})$ appear at $863 \mathrm{~cm}^{-1}$. These values are in agreement with the data for the 4 -substituted (Z) - and (E)-semicarbazones given in ref. ${ }^{4}$. Also the easy cyclization of the (Z)-isomers to the corresponding derivatives of 6 -azauracil (0.1 m solution of sodium methoxide in methanol, room temperature) confirms the assigned configuration, in analogy with the earlier findings ${ }^{3}$. During the cyclization of the benzoylated ribosylsemicarbazones VI and VIII a simultaneous debenzoylation takes place under formation of the free ribosyl derivatives of 6 -azauracil $I X$ and $X I$.

EXPERIMENTAL

Melting points were taken on a heated microscope stage (Kofler block). The infrared spectra were recorded on a UR-20 (Carl Zeiss, Jena) apparatus. Optical rotations were taken on an automatic Perkin-Elmer 141 MC polarimeter. Column chromatography was performed on the Pitra silica gel (particle size, $30-60 \mu$; Service Laboratories of this Institute). Photochemical reactions were performed with a 125 W medium-pressure mercury lamp in the quartz immersion well cooled with water.

Methyl Dimethoxyacetate

Glyoxylic acid (hydrate, 98%; Aldrich-Europe; 10 g) was co-distilled with toluene (0.5 I) in vacuo. The residue was dissolved in methanol (250 ml), concentrated sulfuric acid (1 ml) was added and the solution was refluxed for 5 h . After cooling down, the solution was shaken with anhydrous potassium carbonate (5 g). The mixture was evaporated to a 100 ml volume and benzene (200 ml) was added. The insoluble portion was filtered off and washed with benzene (50 ml). The combined filtrates were evaporated to a volume of c .40 ml and the solution was removed from an oily residue which was washed with benzene (10 ml) once again. The combined benzene solutions were concentrated to a 12 ml volume and the residue was distilled under diminished pressure $(2.3 \mathrm{kPa})$. The fraction boiling at $65-67^{\circ} \mathrm{C}$ was collected. Yield, $7 \cdot 2 \mathrm{~g}(58 \%)$ of methyl dimethoxyacetate. IR spectrum of the obtained compound is identical with the reported one ${ }^{9}$.

Glyoxylic Acid (E)-4-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)semicarbazone (II)

A mixture of semicarbazide ${ }^{7} I(520 \mathrm{mg} ; 1 \mathrm{mmol})$, methanol (10 ml), and glyoxylic acid (hydrate, 98%; Aldrich-Europe; 0.1 g) was stirred for 30 min at room temperature and evaporated to a 5 ml volume. The compound deposited on a 2 h standing was filtered off and washed with methanol.

Yield, $560 \mathrm{mg}(97 \%)$ of semicarbazone $I I$, m.p. $208 \cdot 5-210 \cdot 5^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}^{25}-75^{\circ}(c 0.45$; dimethylformamide). IR spectrum (KBr): $3440,3360,3235$, and sh $3185 \mathrm{~cm}^{-1}(\mathrm{OH}, \mathrm{NH}), 1728 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ benzoate), $1692 \mathrm{~cm}^{-1}$ (amide I), 1601 and sh $1589 \mathrm{~cm}^{-1}$ (ring benzoate $+\mathrm{C}=\mathrm{N}$), 1534 and $1541 \mathrm{~cm}^{-1}$ (amide II); saturated solution in $\mathrm{CHCl}_{3}: 3347 \mathrm{~cm}^{-1}(\mathrm{NH})$. For $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{10}(575 \cdot 5)$ calculated: $60.52 \% \mathrm{C}, 4.38 \% \mathrm{H}, 7.30 \% \mathrm{~N}$; found: $60.45 \% \mathrm{C}, 4.51 \% \mathrm{H}$, $7.44 \% \mathrm{~N}$.

Methyl Glyoxylate (E)-4-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)semicarbazone (III)
A) Ethereal solution of diazomethane was dropped into a stirred mixture of methanol (60 ml) and the acid $I I(575 \mathrm{mg} ; 1 \mathrm{mmol})$ until the acid had dissolved. The reaction course was monitored by TLC in the system toluene-ethyl acetate $(1: 1)$. The solution was evaporated under diminished pressure and the residue was chromatographed on a silica gel column (150 g) in the system toluene---ethyl acetate ($1: 1$). Crystallization of the residue of the main UV-absorbing fraction from acetone afforded $327 \mathrm{mg}(55.5 \%)$ of methyl ester $I I I$, m.p. $184-186^{\circ} \mathrm{C}$. Crystallization of the mother liquors residue furnished additional $88 \mathrm{mg}(15 \%)$ of the same compound. $[\alpha]_{\mathrm{D}}^{25}-88^{\circ}$ (c0.44; ethyl acetate). IR spectrum is identical with that of an authentic compound ${ }^{4}$. For $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{10}$ (589.5) calculated: $61 \cdot 12 \% \mathrm{C}, 4.62 \% \mathrm{H}, 7.13 \% \mathrm{~N}$; found: $61.06 \% \mathrm{C}, 4.67 \% \mathrm{H}, 7.21 \% \mathrm{~N}$.
B) To a solution of semicarbazide $I(520 \mathrm{mg} ; 1 \mathrm{mmol})$ in dichloromethane (10 ml) was added methyl dimethoxyacetate (200 mg). The solution was refluxed for 5 h , evaporated under diminished pressure, and the residue was chromatographed on a silica gel column (80 g) in the system chloroform-ethyl acetate ($7: 3$). Yield, $413 \mathrm{mg}(70 \%$) of the (E)-isomer $I I I$ and $64 \mathrm{mg}(11 \%)$ of the (Z)-isomer $V I$.

Methyl Glyoxylate (Z)-4-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)semicarbazone (VI)

A solution of the (E)-isomer $I I I(1.5 \mathrm{~g})$ in 0.2 m solution of hydrogen chloride in toluene (100 ml) was heated at $80^{\circ} \mathrm{C}$ for 30 min . After cooling down, toluene was evaporated under diminished pressure and the residue was chromatographed on a silica gel column (200 g) in the system chloro-form-ethyl acetate ($7: 3$). Yield, $1 \cdot 11 \mathrm{~g}(74 \%)$ of the (E)-isomer $I I I$ and $310 \mathrm{mg}(21 \%)$ of the (Z)isomer VI. $[\alpha]_{\mathrm{D}}^{25}+30^{\circ}\left(c 0.46\right.$; dimethylformamide). IR spectrum (chloroform, $c 0.003 \mathrm{~mol} \mathrm{l}^{-1}$): $3412 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{4}-\mathrm{H}\right), 3292 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{2}-\mathrm{H}\right) ; c 2 \%: 1727 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$ benzoate, a mide I of monomer), sh 1695 and $1710 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ ester, amide I of dimer), 1603 and $1586 \mathrm{~cm}^{-1}(8 \mathrm{a}, \mathrm{C}=\mathrm{N}$, 8b), sh 1541,1523 , sh 1506 , and sh $1495 \mathrm{~cm}^{-1}$ (amide II), $1453 \mathrm{~cm}^{-1}(19 b), 1441 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{3}\right), 1268 \mathrm{~cm}^{-1}$ (C-O benzoate), $1122 \mathrm{~cm}^{-1}$ (amide III), $863 \mathrm{~cm}^{-1}(\mathrm{~N}=\mathrm{C}-\mathrm{H})$. For $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{10}(589 \cdot 5)$ calculated: $61 \cdot 12 \% \mathrm{C}, 4.62 \% \mathrm{H}, 7 \cdot 13 \% \mathrm{~N}$; found: $61 \cdot 00 \% \mathrm{C}, 4.63 \% \mathrm{H}$, $6.97 \% \mathrm{~N}$.

Methyl Pyruvate (E)-4-Phenylsemicarbazone (IV)

Methyl pyruvate ${ }^{10}(400 \mathrm{mg})$ was added to a solution of 4 -phenylsemicarbazide ($453 \mathrm{mg} ; 3 \mathrm{mmol}$) in methanol (6 ml). The deposited compound was filtered off after 3 h . Yield, $615 \mathrm{mg}(87 \%)$ of $I V$, m.p. $180-182^{\circ} \mathrm{C}$. Evaporation of the mother liquors and crystallization of the residue from methanol afforded additional $30 \mathrm{mg}(4 \%)$ of the same compound. IR spectrum (chloroform, c $0.003 \mathrm{~mol} .1^{-1}$): 3382 and $3370 \mathrm{~cm}^{-1}(\mathrm{NH}) ; c 2 \%: 1704 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$, amide I), $1598 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{N}$, ring), $1542 \mathrm{~cm}^{-1}$ (amide II), sh 1504 and $1450 \mathrm{~cm}^{-1}$ (ring), sh $1440 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right)$, $1374 \mathrm{~cm}^{-1}\left(\mathrm{C}-\mathrm{CH}_{3}\right), 1163$ and $1144 \mathrm{~cm}^{-1}$ (amide III). For $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ (235.2) calculated: $56.16 \% \mathrm{C}, 5.57 \% \mathrm{H}, 17.86 \% \mathrm{~N}$; found: $56.06 \% \mathrm{C}, 5.57 \% \mathrm{H}, 18.08 \% \mathrm{~N}$.

Methyl Pyruvate (Z)-4-Phenylsemicarbazone (VII)
A solution of $I V(250 \mathrm{mg})$ in methanol $(250 \mathrm{ml})$ was irradiated with the mercury lamp. The solution was evaporated under diminished pressure and the residue was chromatographed on a silica gel column (70 g) in the system toluene-ethyl acetate $(5: 2)$. On crystallization of the single fractions from 2-propanol, $95 \mathrm{mg}(38 \%)$ of $I V$ and $110 \mathrm{mg}(44 \%)$ of $V I I$ (m.p. $132-133^{\circ} \mathrm{C}$) were obtained. IR spectrum (chloroform, c $0.003 \mathrm{~mol} \mathrm{I}^{-1}$): $3392 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{4}-\mathrm{H}\right)$, sh 3358 and $3297 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{2}-\mathrm{H}\right)$; c 2% : sh 1729 , sh 1703 , and $1693 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$, amide I$), 1603$ and $1594 \mathrm{~cm}^{-1}$ (ring 8a, $8 \mathrm{~b}+\mathrm{C}=\mathrm{N}$); $1535 \mathrm{~cm}^{-1}$ (amide II), sh $1486 \mathrm{~cm}^{-1}$ and $1447 \mathrm{~cm}^{-1}$ (19b), sh 1439,1417 , and $1377 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right), 1304,1156$, and $1140 \mathrm{~cm}^{-1}$ (amide III). For $\mathrm{C}_{11} \mathrm{H}_{13}$. . $\mathrm{N}_{3} \mathrm{O}_{3}(235 \cdot 2)$ calculated: $56 \cdot 16 \% \mathrm{C}, 5 \cdot 57 \% \mathrm{H}, 17.86 \% \mathrm{~N}$; found: $56.34 \% \mathrm{C}, 5.71 \% \mathrm{H}, 18.04 \% \mathrm{~N}$.

Methyl Pyruvate (E)-4-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)semicarbazone (V)

Methyl pyruvate (150 mg) was added to a solution of ribosylsemicarbazide ${ }^{7}$ I ($520 \mathrm{mg} ; 1 \mathrm{mmol}$) in 1,2 -dichloroethane (6 ml). The whole was left to stand at room temperature for 4 h , the solution was evaporated under diminished pressure and the residue was chromatographed on a column of silica gel $(60 \mathrm{~g})$ in the system toluene-ethyl acetate ($2: 1$). The (Z)-isomer VIII ($30 \mathrm{mg} ; 5 \%$) and the (E)-isomer $V(551 \mathrm{mg} ; 91 \%)$ were obtained. For title compound, $[\alpha]_{D}^{25}-2^{\circ}$ (c $0 \cdot 49$; ethyl acetate). IR spectrum (chloroform, c $0.003 \mathrm{~mol} 1^{-1}$): $3412 \mathrm{~cm}^{-1}\left(\mathrm{~N}^{4}-\mathrm{H}\right), 3366 \mathrm{~cm}^{-1}$ ($\mathrm{N}^{2}-\mathrm{H}$) ; c 2\%: $1726 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ benzoate, amide I of monomer), sh 1712 and sh $1692 \mathrm{~cm}^{-1}$ $\left(\mathrm{C}=\mathrm{O}\right.$ ester, amide I of dimer), sh $1616 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}), 1604$ and $1587 \mathrm{~cm}^{-1}(8 \mathrm{a}, 8 \mathrm{~b})$, sh 1541 , 1532 , and sh $1521 \mathrm{~cm}^{-1}$ (amide II), $1454 \mathrm{~cm}^{-1}$ (19b), 1440 and $1376 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right)$, sh $1142 \mathrm{~cm}^{-1}$ (amide III). For $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{10}$ (603.6) calculated: $61.69 \% \mathrm{C}, 4.84 \% \mathrm{H}, 6.96 \% \mathrm{~N}$; found: $61 \cdot 89 \% \mathrm{C}, 4.94 \% \mathrm{H}, 6 \cdot 82 \% \mathrm{~N}$.

Methyl Pyruvate (Z)-4-(2,3,5-Tri-O-benzoyl- β-D-ribofuranosyl)semicarbazone (VIII)
A solution of $V(250 \mathrm{mg})$ in methanol $(250 \mathrm{ml})$ was irradiated with mercury lamp for 30 min . The solution was then evaporated under diminished pressure. Chromatography of the residue on a silica gel column (80 g) in the system toluene-ethyl acetate ($5: 2$) afforded $70 \mathrm{mg}(28 \%)$ of V (2nd fraction) and $89 \mathrm{mg}\left(35.6 \%\right.$) of VIII (1st fraction). $[\alpha]_{D}^{25}-73 \%$ (c 0.49 ; ethyl acetate). IR spectrum (chloroform, c $0.003 \mathrm{~mol} .1^{-1}$): 3404 and $3295 \mathrm{~cm}^{-1}(\mathrm{NH}) ; c 2 \%: 1728 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$ benzoate, amide I of monomer), sh $1709 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}$ ester, amide I of dimer), 1604 and $1587 \mathrm{~cm}^{-1}(8 \mathrm{a}, 8 \mathrm{~b}, \mathrm{C}=\mathrm{N}), 1529 \mathrm{~cm}^{-1}$ (amide II), 1454 and $1439 \mathrm{~cm}^{-1}\left(19 \mathrm{~b}, \mathrm{CH}_{3}\right), 1379 \mathrm{~cm}^{-1}$ $\left(\mathrm{CH}_{3}\right), 1126 \mathrm{~cm}^{-1}$ (amide III). For $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{10}$ ($603 \cdot 6$) calculated: $61 \cdot 69 \% \mathrm{C}, 4 \cdot 84 \% \mathrm{H}$, $6.96 \% \mathrm{~N}$; found: $61.68 \% \mathrm{C}, 4.90 \% \mathrm{H}, 6.85 \% \mathrm{~N}$.

4-(β-D-Ribofuranosyl)-1,2,4-triazin-3,5(2H,4H)-dione (IX)

A solution of the (Z)-semicarbazone $I I I$ ($295 \mathrm{mg} ; 0.5 \mathrm{mmol}$) in 0.1 m methanolic solution of sodium methoxide (15 ml) was left to stand for 1 h at room temperature and then it was neutralized with Dowex $50\left(\mathrm{H}^{+}\right.$; pre-washed with methanol). The resin was filtered off, washed with methanol (30 ml), and the combined filtrates were evaporated under diminished pressure. Crystallization of the residue from ethanol afforded $74 \mathrm{mg}(60 \%)$ of $V, \mathrm{~m} . \mathrm{p} .187-188.5^{\circ} \mathrm{C}$. Mother liquors furnished additional $10 \mathrm{mg}(8 \%)$ of the same compound. $[\alpha]_{\mathrm{D}}^{25}-28^{\circ}$ (c 0.39 ; water). UV spectrum - $0 \cdot 1 \mathrm{~m}$ -$-\mathrm{HCl}: \lambda_{\text {max }} 264 \mathrm{~nm}(\log \varepsilon 3.70), \lambda_{\min } 221 \mathrm{~nm}(\log \varepsilon 3.28) ; \mathrm{H}_{2} \mathrm{O}: \lambda_{\text {max }} 263 \mathrm{~nm}(\log \varepsilon 3.73), \lambda_{\text {min }} 222 \mathrm{~nm}$ $(\log \varepsilon 3.42) ; 0.1 \mathrm{M}-\mathrm{NaOH}: \lambda_{\max } 250$ and $303 \mathrm{~nm}(\log \varepsilon 4.05$ and 3.40). IR spectrum (KBr): 3470 , 3430 , sh 3365,3265 , and sh $3200 \mathrm{~cm}^{-1}(\mathrm{OH}, \mathrm{NH}), 1747,1681$, and $1663 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$,
$1604 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N})$. For $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{6}(245 \cdot 2)$ calculated: $39 \cdot 19 \% \mathrm{C}, 4.52 \% \mathrm{H}, 17 \cdot 14 \% \mathrm{~N}$; found: $39 \cdot 10 \% \mathrm{C}, 4.41 \% \mathrm{H}, 16.93 \% \mathrm{~N}$.

4-Phenyl-6-methyl-1,2,4-triazin-3,5(2H,4H)-dione (X)

A solution of $V I I(47 \mathrm{mg} ; 0.2 \mathrm{mmol})$ in 0.1 m methanolic solution of sodium methoxide (3 ml) was allowed to stand for 10 min at room temperature and then neutralized with Dowex $50\left(\mathrm{H}^{+}\right)$. The resin was filtered off and washed with methanol (5 ml). The combined filtrates were evaporated under diminished pressure. Crystallization of the residue from methanol afforded 26 mg (64%) of X, m.p. $245 \cdot 5-246 \cdot 5^{\circ} \mathrm{C}$ (reported ${ }^{11}$, m.p. $242 \cdot 5^{\circ} \mathrm{C}$). Crystallization of the mother liquors residue from methanol yielded additional $11 \mathrm{mg}(27 \%)$ of the same compound. UV spectrum -$0.1 \mathrm{M}-\mathrm{HCl}: \lambda_{\max } 261 \mathrm{~nm}(\log \varepsilon 3.76)$, $\lambda_{\min } 229 \mathrm{~nm}(\log \varepsilon 3.45) ; \mathrm{H}_{2} \mathrm{O}: \lambda_{\max } 262 \mathrm{~nm}(\log \varepsilon 3.79)$, $\lambda_{\min } 230 \mathrm{~nm}(\log \varepsilon 3.53) ; 0 \cdot 1 \mathrm{~m}-\mathrm{NaOH}: \lambda_{\max } 260 \mathrm{~nm}(\log \varepsilon 4.13) ;$ reported ${ }^{10}$, $\lambda_{\max } 264 \mathrm{~nm}, \varepsilon 6360$ in ethanol. IR spectrum (KBr): $3200 \mathrm{~cm}^{-1}(\mathrm{NH}), 1729$ and $1668 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1593$, sh 1506 , 1495 , and $1438 \mathrm{~cm}^{-1}$ (ring), $1380 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right)$. For $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$ (203.2) calculated: $59 \cdot 11 \% \mathrm{C}$, $4.46 \% \mathrm{H}, 20.68 \% \mathrm{~N}$; found: $59.05 \% \mathrm{C}, 4.50 \% \mathrm{H}, 20.81 \% \mathrm{~N}$.

6-Methyl-4-(β-D-ribofuranosyl)-1,2,4-triazin-3,5(2H,4H)-dione (XI)
A solution of $V I I I(151 \mathrm{mg} ; 0.25 \mathrm{mmol})$ in 0.1 m methanolic solution of sodium methoxide (4 ml) was allowed to stand for 2 h at room temperature, neutralized with Dowex $50\left(\mathrm{H}^{+}\right)$, and evaporated under diminished pressure. The residue was chromatographed on a silica gel column (20 g) in the system ethyl acetate-acetone-ethanol-water ($40: 2: 1: 1$). Compound $X I(40 \mathrm{mg} ; 62 \%$) was obtained in the form of a solid foam. The analytical sample was crystallized from the system 2-propanol-ethyl acetate ($1: 1$). M.p. $161-164^{\circ} \mathrm{C}$; reported ${ }^{2}, 164-165^{\circ} \mathrm{C}$. UV spectrum -0.1 m -$-\mathrm{HCl}: \lambda_{\max } 266 \mathrm{~nm}(\log \varepsilon 3.68)$, $\lambda_{\min } 228 \mathrm{~nm}(\log \varepsilon 3.36) ; \mathrm{H}_{2} \mathrm{O}: \lambda_{\max } 265 \mathrm{~nm}(\log \varepsilon 3.72)$, $\lambda_{\min }$ $231 \mathrm{~nm}(\log \varepsilon 3.48) ; 0 \cdot 1 \mathrm{M}-\mathrm{NaOH}: \lambda_{\max } 249 \mathrm{~nm}(\log \varepsilon 4.08)$. IR spectrum $(\mathrm{KBr}): 1731$ and $1675 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 1380 \mathrm{~cm}^{-1}\left(\mathrm{CH}_{3}\right)$. For $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{6} \mathrm{O}_{6}(259 \cdot 2)$ calculated: $41 \cdot 70 \% \mathrm{C}, 5.05 \% \mathrm{H}$, $16.21 \% \mathrm{~N}$; found: $41 \cdot 62 \% \mathrm{C}, 5 \cdot 27 \% \mathrm{H}, 15 \cdot 88 \% \mathrm{~N}$.

The author wishes to thank Mrs J. Hlavăc̆ková for an excellent technical assistance, Dr P. Fiedler for measurement and interpretation of IR spectra, Analytical Departınent (Dr J. Horáček, Head) of this Institute for elemental analyses, and Mrs Z. Ledvinová for meastrement of optical rotations.

REFERENCES

1. Handschumacher R. E.: J. Biol. Chem. 235, 764 (1960).
2. Hall R. H.: J. Amer. Chem. Soc. 80, 1145 (1958).
3. Hřebabecký H., Beránek J.: This Journal 40, 2364 (1975).
4. Fiedler P., Hřebabecký H., Beránek J.: This Journal 40, 2378 (1975).
5. Hřebabecký H., Beránek J.: This Journal 40, 2402 (1975).
6. Hrebabecký H., Fiedler P., Beránek J.: Nucleic Acids Res. Spec. Publ. No. 1, s9 (1975).
7. Hřebabecký H., Točík Z., Beránek J.: This Journal 44, 1475 (1979).
8. Just G., Kim S.: Can. J. Chem. 55, 427 (1977).
9. The Sadtler Research Laboratories: The Sadtler Standard Spectra, spectrum No. 17108.
10. Clinton R. O., Laskowski S. C.: J. Amer. Chem. Soc. 70, 3135 (1948).
11. Tišler M., Vrbaški Ž.: J. Org. Chem. 25, 770 (1960).

Translated by \mathbf{Z}. Točik.

[^0]: * Part XXXIII in the series Analogues of Nucleosides; Part XXXII: Nucleic Acids Res. 8,

